Indian Statistical Institute, Bangalore B. Math. Third Year Second Semester - Analysis IV Duration: 3 hours Date : April 28, 2015

Semestral Exam

Section I: Answer any four, each question carries 6 marks

- 1. If X is a compact metric space, prove that C(X) is a separable metric space.
- 2. If X is a compact metric space and \mathcal{A} is a closed subalgebra of $C_{\mathbb{R}}(X)$ that separates points of X, prove that $\mathcal{A} = C_{\mathbb{R}}(X)$ or there is a $x_0 \in X$ such that $\mathcal{A} = \{f \in C_{\mathbb{R}}(X) \mid f(x_0) = 0\}.$
- 3. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be $f(x, y) = (x^2 y^2, 2xy)$. Prove that f is locally one-one but not one-one on $\mathbb{R}^2 \setminus (0, 0)$ and discuss inverse function theorem at (1, 1).
- 4. Let $f \in \mathcal{R}[-\pi,\pi]$ be a 2π -periodic function and $s_n(x)$ be the *n*-th partial sum of the Fourier series at $x \in \mathbb{R}$. Prove that for $x \in \mathbb{R}$,

$$\frac{1}{n}\sum_{i=0}^{n-1}s_i(x) = \frac{1}{2n\pi}\int_{-\pi}^{\pi}\frac{f(x+t) + f(x-t)}{2}\frac{\sin^2\frac{nt}{2}}{\sin^2\frac{t}{2}}dt.$$

- 5. Prove that $\sum_{1}^{\infty} \frac{\sin(2n-1)x}{2n-1} = \frac{\pi}{4}$ for $0 < x < \pi$.
- 6. Let f(x) = 1 if $|x| \le 1$, f(x) = 0 if $1 < |x| \le \pi$ and $f(x + 2\pi) = f(x)$ for all $x \in \mathbb{R}$. Find the Fourier coefficients of f and deduce that $\sum_{1}^{\infty} \frac{\sin n}{n} = \frac{\pi 1}{2}$.

Section II: Answer any two, each question carries 13 marks

1. (a) Show that the set of all polynomials of degree at most 3 with coefficients from [-1,1] is compact in C[0,1]. Does the result hold if coefficients are not assumed to be from [-1,1] (Marks: 7).

(b) Prove that $\Omega = \{A \in L(\mathbb{R}^n) \mid \det(A) \neq 0\}$ is open and $A \mapsto A^{-1}$ is continuous on Ω .

2. (a) Let $E \subset \mathbb{R}^{n+m}$ be an open set and $f: E \to \mathbb{R}^n$ be a C^1 -map. Assume f(a,b) = 0 and A_x is invertible where A = f'(a,b). Prove that there is neighborhood U of (a,b) such that $\{(f(x,y),y) \mid (x,y) \in U\}$ is open.

(b) Prove that for
$$0 < x < 2\pi$$
, $x^2 = \frac{4}{3}\pi^2 + 4\sum_{1}^{\infty} \left[\frac{\cos nx}{n^2} - \frac{\pi \sin nx}{n}\right]$ (Marks: 6).

3. Let $f \in \mathcal{R}[-\pi,\pi]$ be a 2π -periodic function and $s_n(x)$ be the *n*-th partial sum of the Fourier series at $x \in \mathbb{R}$.

(a) If $s(x) = \lim_{t \to 0} \frac{f(x+t) + f(x-t)}{2}$ exists for some $x \in [-\pi, \pi]$, prove that $\sigma_n(x) = \frac{1}{n} \sum_{i=0}^{n-1} s_i(x) \to s(x)$.

(b) If f is differentiable such that $f' \in \mathcal{R}[-\pi,\pi]$ and $\frac{1}{2\pi} \int_{-\pi}^{\pi} |f'(t)|^2 dt \leq 1$. Prove that $|f(x) - s_n(x)| \leq \frac{2}{\sqrt{n}}$ for all $x \in \mathbb{R}$ and $n \geq 1$ (Marks: 7).